
Toward a unified description of jet and medium scales in
heavy-ion collisions

Konrad Tywoniuka, Yacine Mehtar-Tanib

aTheoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
bInstitute for Nuclear Theory, University of Washington, Box 351550, Seattle, WA 98195-1550, USA

Abstract

The striking suppression and modification patterns that are observed in jet observables measured in heavy-ion collisions
with respect to the proton-proton baseline have the potential to constrain the spatio-temporal branching process of
energetic partons in a dense QCD medium. The mechanism of jet energy loss is intricately associated with medium
resolution of jet substructure fluctuations. This naturally affects the behavior of the suppression of jets at high-pT ,
inducing an explicit dependence on jet scales. In this contribution, we review recent work on using the insight from
multi-parton quenching to calculate leading-logarithmic corrections to the single-inclusive jet spectrum, and discuss its
impact on a wide range of observables, including jet substructure.
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1. Introduction

The strong suppression of high-pT particles and jets, including heavy quarks, in heavy-ion collisions
stand out as one of the hallmark measures of final-state interactions in a color deconfined medium; for an
introduction, see [1]. Strikingly, the suppression of jets persists up to very large transverse momenta. This
calls into question the validity of the conventional jet quenching paradigm based on single-parton energy
loss because of the large available phase space for higher-order corrections. Careful considerations of the
space-time evolution of jets, see [2], turns out to play an important role.

It has already been pointed out in Monte-Carlo studies that fluctuations related to the jet fragmenta-
tion, or substructure, are extremely important for understanding experimental data, see e.g. [3, 4], but
until recently a first-principle understanding of these corrections was lacking. In the vacuum, higher-order
corrections are typically not enhanced by large logarithms because of the cancellation of real and virtual
contributions for sufficiently inclusive observables. In special cases, however, they are enhanced by the
phase space where the virtual terms dominate, and the procedure that allows to account for such effects is
generically referred to as a Sudakov resummation.

As a classic example, let us consider higher-order corrections to the singe-inclusive jet cross section
in heavy-ion collisions. In contrast to the vacuum, we argue that energy loss effects that are induced by
medium interactions will give rise to a mismatch between real and virtual emissions. This occurs because a
real emission happening early in the medium is sensitive to the quenching of two particles along the length of
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the medium. In comparison, the virtual fluctuation is only affected by quenching of the parent parton because
it remains unresolved by the medium. The consequences of such a mismatch can be easily illustrated by
considering an extreme scenario where the medium absorbs all jet daughter particles, leaving the leading,
most energetic branching unaffected. In this case, the higher-order correction is purely virtual and simply
counts number of modes that are forbidden to occur inside the medium. In terms of formation times this
amounts to tf < L, where tf ∼ 1/(ωθ2). The number of these fluctuations is then given by the phase space
volume and reads Πtf<L =

1
2 ᾱ log2 pT R2L in the leading-logarithmic approximation, where ᾱ ≡ αsCR/π. At

large pT , resumming such corrections gives rise to a jet suppression factor Rjet ∼ exp[−Πtf<L] that can be
significantly smaller than unity. This result however neglects color (de)coherence effects which, as we will
see below, change this behavior substantially.

Our main message is that quenching modifies directly the yield of high-pT jets and imposes further
phase space restrictions for their subsequent fragmentation, and we can work out how to deal with both in a
theoretically controlled manner. Here we report on a QCD calculation [5] that resums a set of logarithmically
enhanced higher-order corrections accounting for finite quenching effects. We will take particular care in
defining the logarithmic phase space where large corrections occur, explaining the role of color decoherence
in determining it.

2. Higher-order corrections to jet quenching

The jet suppression factor is defined as

Rjet =

⎛⎜⎜⎜⎜⎝ dσmed

dp2
T dy

⎞⎟⎟⎟⎟⎠
/ ⎛⎜⎜⎜⎜⎝ dσvac

dp2
T dy

⎞⎟⎟⎟⎟⎠ , (1)

where the pT -spectrum in medium is modified according to [6]

dσmed

dp2
T dy
=

∫ ∞
0

dεP(ε)
dσvac(pT + ε)

dp′2T dy
, (2)

where P(ε) is a generic probability distribution for emitting an energy ε out of the jet cone. In addition
to its sensitivity to the jet quenching parameter q̂ and the medum size L, it also depends on the jet pT and
cone size R. By approximating the steeply falling spectrum by dσvac(pT + ε) � dσvac(pT )e−nε/pT , the nuclear
modification factor is simply related to the appropriate moment of the Laplace transform of the quenching
weight, Rjet = Q(pT ), with Q(pT ) ≡ P̃(pT/n).

For ease of explanation, let us assume that all jets are initiated by quarks at high pT and expand the
suppression factor Rjet in terms of the strong coupling constant,

Rjet = Qq(pT ) +Q(1)(pT ) + O(α2
s) , (3)

where Qq(pT ) ≡ P̃q(pT/n) is the quenching factor of a single quark. At high-pT , where radiative processes
dominate energy loss out of the jet cone, it is computed by resumming multiple induced gluon emissions en-
hanced by the medium length. Technically, this allows to neglect any interference effects, and the probability
distribution is found by solving the rate equation [6, 1, 15]

∂

∂t
P̃q(ν, t) = γ(ν, t)P̃q(ν, t) , (4)

up to t = L, where γ(ν, t) =
∫ ∞

0 dω (e−νω − 1)dI/[dωdt] is the Laplace transform of the splitting rate
(regularized by adding virtual splittings). For our present purposes, we will approximate the rate with
dI/[dωdt] = ᾱ

√
q̂/ω3 that accounts for multiple, soft scattering in the medium, where q̂ is the celebrated jet

transport coefficient [7, 8]. For this spectrum, ωc ∼ q̂L2 acts as a cut-off energy which, if neglected, results
in a time-independent rate given by,

Qq(pT ) = e−2ᾱL
√
πnq̂/pT . (5)
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Not surprisingly, this takes the characteristic form of a Sudakov suppression factor for the induced gluons,
and the exponent is nothing but the multiplicity of gluons with ω > pT/n where virtual emissions dominate
over the real ones [6], see also [9] for further improvements. The regime of strong quenching, i.e. Qq(pT ) �
1, arises for pT � nᾱ2ωc. We point out that since this quenching factor only knows about a single parton
in the high-energy limit, there is no a priori dependence on the jet scales. This is further justified since soft
radiation ∼ ᾱ2ωc is emitted at angles parametrically larger than the jet cone, see [9] for refinements.

After this short recap, we can now turn to the question of quantifying the higher-order terms. The first
O(αs) correction in (3) reads

Q(1)(pT ) =
∫

dz Pgq(z)
∫

dθ
θ

αs

π

[
Qgq(pT ) −Qq(pT )

]
, (6)

where Pgq(z) is the Altarelli-Parisi splitting function. The first term describes the real gluon emission and
its subsequent quenching, while the second term describes a virtual fluctuation where only the parent quark
is affected by energy loss. In the large-Nc limit, the quenching of a pair of partons is simply the combined
effect of the quenching of the total charge, that is related to the color charge of the parent parton, and the
additional quenching related to the additional color charge generated in the splitting [15]. In Laplace space
we can simply write Qgq(pT ) = Qq(pT )Qsing(pT ), and the quark quenching factor that is common in both
terms in (6) can be factored out. While Eq. (6) describes a O(αs) correction, it could become sizable in a
region of phase space where the quenching affects the color singlet dipole. Let us therefore proceed with a
brief discussion of the singlet quenching weight Qsing(pT ) ≡ P̃sing(pT/n).

It was shown [15] that the resummation of multiple induced gluons for the probability of energy loss off
a color singlet dipole involves both direct and interference terms. The resulting rate equation reads,

∂

∂t
P̃sing(ν, t) = 2γdir(ν, t)Psing(ν, t) + γint(ν, t)S2(t) . (7)

In this case, the rate of direct emissions is identical to the one in (4), γdir(ν, t) = γ(ν, t). The interference term
is simply γint(ν, t) = −2γ(ν, t) for soft gluons, due to color charge conservation. However, the interference
term involves a dipole suppression factor describing the survival probability of color coherence at a given
time in course of the dipole propagation. It is called the decoherence parameter [10, 11], and reads

S2(t) = exp
(
− 1

12
q̂θ2t3

)
= exp

⎡⎢⎢⎢⎢⎢⎣− 1
12

(
t
td

)3⎤⎥⎥⎥⎥⎥⎦ , (8)

which gives rise to a characteristic time-scale for decoherence [12, 13, 14]. This time-scale can easily be
estimated by comparing the medium resolution scale due to multiple scattering λ⊥ ∼ (q̂t)−1/2 with the size of
the dipole x⊥ ∼ θt where θ is the dipole angle. The two scales become comparable at td ∼ (q̂θ2)−1/3, which is
the so-called decoherence time.

For small angle dipoles, color decoherence takes a long time. In particular, for td 
 L or θ 
 θc ∼
(q̂L3)−1/2, the singlet dipole does not lose energy Qsing(pT )|td
L ≈ 1. This is a manifestation of color
transparency. Hence, logarithmic corrections in (6) will only arise as long as td � L, where the singlet
quenching factor becomes the product of the independent quenching factors off the dipole constituents, i.e.
when S2 � 1 in (7), Qsing(pT )|td�L ≈ Q2

q(pT ). Furthermore, we have to demand that the jet is formed
sufficiently early in the medium so as not to be interfering with induced emissions, in particular tf < td. It
can be shown that these considerations capture the leading-logarithmic behavior of the cross section and
that a more sophisticated treatment of the phase space leads to sub-leading logarithmic corrections [5].

Returning to Eq. (6), it can now be simplified as

Q(1)(pT ) � Qq(pT ) × 2ᾱ
∫

tf<td<L

dz
z

dθ
θ

[
Q2

q(pT ) − 1
]
, (9)

� Qq(pT ) ×
[
−2ᾱ log

R
θc

(
log

pT

ωc
+

2
3

log
R
θc

)]
, (10)
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for fixed coupling. In going to the second line, we have focussed on the strong quenching regime, i.e. where
Q(pT ) � 1, where only the virtual term survives.1 As becomes clear from (10), the correction is enhanced
by large logarithms of the phase space related to the jet scales pT and R. In particular, the enhancement is
single-logarithmic in jet pT because of the finite resolution angle θc > 0, and in contrast to the toy-model
considered in the Introduction due to the difference of relevant phase space.

Remarkably, in the large-Nc approximation, all higher order terms in the jet suppression factor are di-
rectly proportional to the quenching of the total color charge, in the same way as in (10). We can therefore
show that

Rjet = Qq(pT ) × C (pT ,R) , (11)

which is the main result of our analysis. Here, C (pT ,R) is a novel “collimator” function [5] that accounts for
the quenching of higher-order jet fluctuations due to the mismatch of real and virtual contributions. In the
strong quenching regime, where only virtual fluctuations contribute, the resummation of all-orders simply
amounts to the exponentiation of the first-order correction in (10), leading to

C (pT ,R) � exp
[
−2ᾱ log

R
θc

(
log

pT

ωc
+

2
3

log
R
θc

)]
. (12)

While the quenching of the “total charge”, or the initial parent quark, in Eq. (11) does not depend on the
jet scales, the additional Sudakov suppression factor is sensitive to them. We have also generalized this
procedure for finite quenching effects, and devised a general resummation formula based on Eq. (9) for the
“collimator” function that also goes beyond the leading-logarithmic approximation [5].

The developments we have described in these proceeding can be employed in a phenomenological anal-
ysis of experimental data on jet suppression. More importantly, they describe a general way of extending
the analysis of energy loss processes to higher orders and gaining theoretical control of their magnitude in
terms of jet and medium scale analysis. They also apply directly to substructure observables, and estimates
of quenching of two subjets found by grooming, based directly on the real term in Eq. (6), were already
presented at the previous edition of this conference series [16]. It is also worth pointing out that a similar
analysis of medium scales could affect our understanding of low-momentum fragments in jets [17, 18]. Ulti-
mately, these developments will aid in attaining a better theoretical control for Monte-Carlo implementations
and will lead to a better grip on the properties of the dense QCD medium created in heavy-ion collisions.
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1Here, our estimates serve to display the parametric behavior. For realistic cases, the real term plays an important role [5].
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